Detecting Bovine Lameness Using Three-Dimensional Limb Movement Variable Analysis

UMBC REU Site: Interdisciplinary Program in High Performance Computing William Dula¹, Jason Glover², Ari Goldbloom-Helzner³, Kayla Makela⁴,

RAs: Qing Ji² and Sai Kumar Popuri², Faculty mentors: Nagaraj Neerchal² and Andrew Raim⁵, Client: Uri Tasch⁶

¹Morehouse College, ²UMBC, ³Brown University, ⁴Michigan State University, ⁵United States Census Bureau, ⁶StepAnalysis LLC

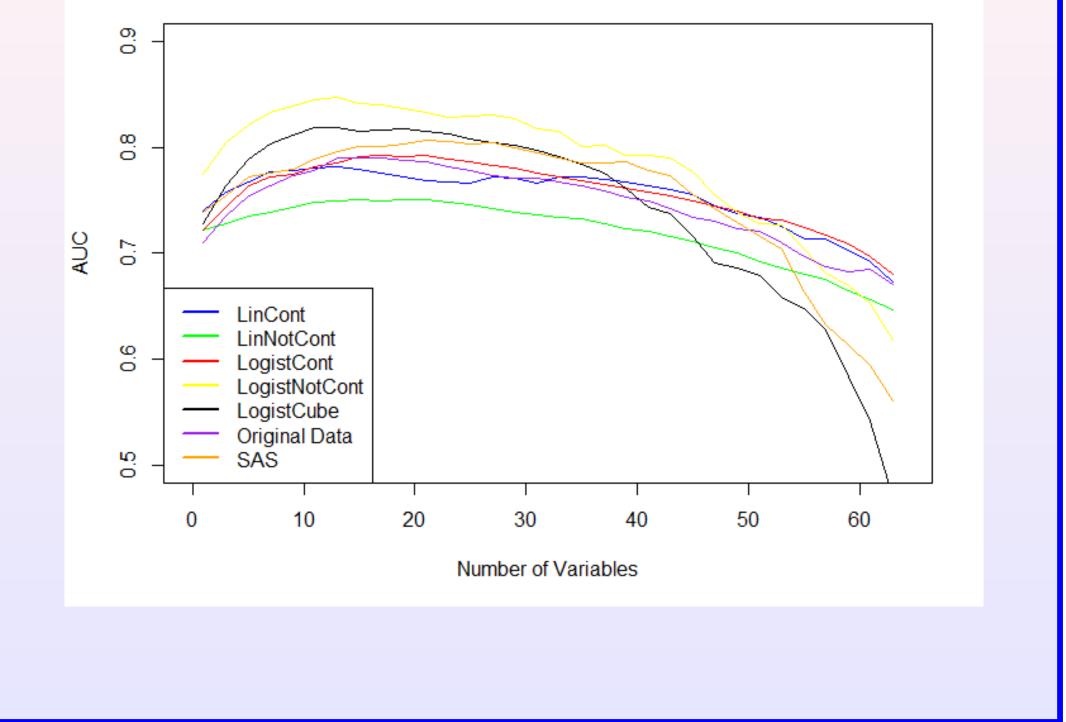
Introduction

Early detection of lameness is important for dairy farmers to enhance profits and animal welfare. Database consists of lameness score and 76 limb movement variables (LMVs) relating to a cow's gait. Previous work on this project used the TRANSREG procedure in SAS and a binomial (sound/lame) classification. In this project, we create R programs to facilitate exploring a large number of transformations and subsets of LMVs.

Lameness Detection Device

Binomial Classification Results

AUC with matched variable selection and varying transformations



Methodology

Logistic regression

 $P(Lame) = \frac{e^{\beta_0 + \sum (\beta_i * TLMV_i)}}{1 + e^{\beta_0 + \sum (\beta_i * TLMV_i)}}$ To find piecewise transformations, let **A** be an $n \times (k+2)$ matrix of the form

 $\begin{bmatrix} \vec{x}_1 & \vec{0} & \vec{0} & \dots & \vec{0} & \vec{1} \\ \vec{0} & \vec{x}_2 & \vec{0} & \dots & \vec{0} & \vec{0} \end{bmatrix}$

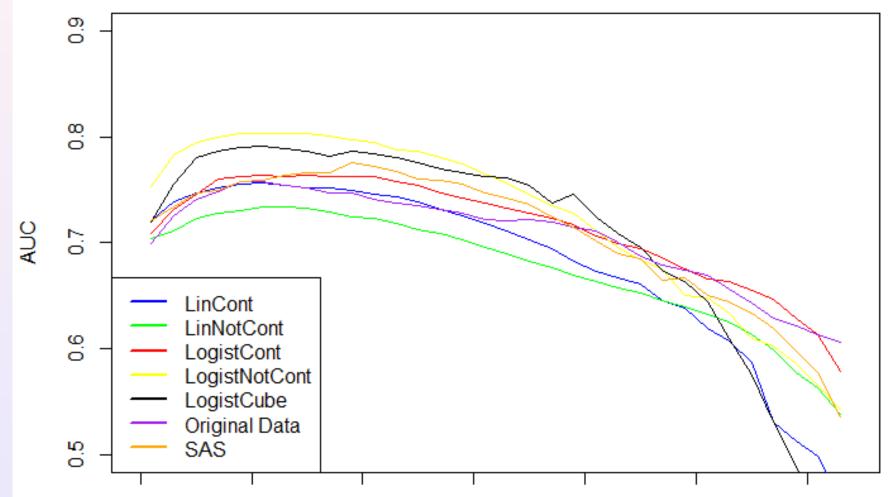
Binomial vs. Multinomial

Binomial (2 classes): lame or sound Multinomial (3 classes): severely lame, mildly lame, or sound MC = misclassification

Contingency Table for Binary Classifier							
		+	-				
	Predicted +	TP	MC				
	Predicted -	MC	TN				

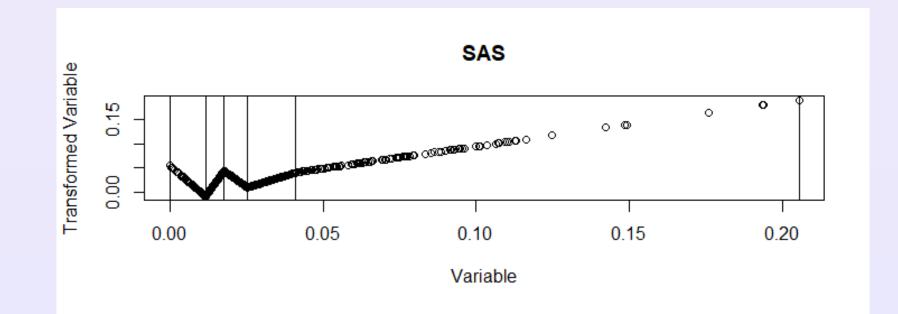
Multinomial Classification Results

Multinomial AUC with matched variable selection, varying transformations



 $\vec{0}$ $\vec{0}$ \vec{x}_3 ... $\vec{0}$ $\vec{0}$ $\begin{bmatrix} \vec{0} & \vec{0} & \vec{0} & \dots & \vec{x}_{(k+1)} & \vec{0} \end{bmatrix}$ where n is the number of observations and k is the number of knots.

- Linearly optimized: $T\vec{x} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\vec{\mathbf{Y}}$
- Logistically optimized: apply logistic regression on basis for each variable
- Continuous: constrain intercepts
- Test cubic spline vs. linear spline



Multinomial Contingency Table

	0			
	1	2	3	
1	True	MC	MC	
2	MC	True	MC	
3	MC	MC	True	

AUC = area under the curve of sensitivity (true positive rate) vs. 1 - specificity (true negative rate). Multinomial AUC can be calculated by

 $AUC_{total} = \sum_{c_i \in C} AUC(c_i) * p(c_i)$ where $AUC(c_i)$ is the AUC of the class and $p(c_i)$ is the prevalence of that class in the dataset.

0	10	20	30	40	50	60		
Number of Variables								

Conclusions

- Logistically optimized transformation achieves higher AUC than TRAN-SREG procedure ^a
- Multinomial model produces a more specific classification than binomial
- Successfully transitioned code from SAS to open-source R

^aPilot Data Set from Dec 2016

References

