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Many application problems in data anal-
ysis inherently contain multidimen-
sional data, also known as tensors. Of-
tentimes, summaries about the data are
desired for a study, for which methods
such as principal component analysis are
useful. For N -dimensional tensors, an
alternative approach is to compute and
interpret tensor decompositions of the
original multidimensional data.

Motivation

A tensor is an N -way array used to store
data, and is thus a generalization of a
matrix. A Tucker decomposition for a
tensor expresses it in terms of compo-
nents. It is also known as 3MPCA [2],
for a 3-way tensor X ∈ RI×J×K and it
satisfies

X ≈ G ×1 A×2 B ×3 C

for the core tensor G ∈ RP×Q×R and
the component (orthogonal) matrices
A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R,
with user requested positive integers
P ≤ I, Q ≤ J , R ≤ K.

Tensor Basics

Starting from an initial guess, the
tucker_als function from the Matlab
Tensor Toolbox [4] iteratively attempts
to fit an alternating least squares (ALS)
model to compute a Tucker decomposi-
tion with a desired core tensor size.

Matlab Tensor Toolbox

Example: Psychological experiment [3]:

• I = 326 children who exhibited
• J = 5 behaviors — Proximity Seek-
ing (PS), Contact Maintaining (CM),
Resistance (R), Avoidance (AV), and
Distance Interaction (DI) — in

• K = 2 situations.

⇒ Data is 3-way tensor X ∈ R326×5×2.

Strength of each behavior is scored from
1 to 7, resulting in data, for instance, for
the first five children in situation 1:

Child PS CM R AV DI
1 3 2 1 2 7
2 6 7 1 1 1
3 1 2 1 2 7
4 7 7 7 1 1
5 6 4 4 1 1

Computing a Tucker decomposition us-
ing tucker_als with requested core
tensor size 2× 2× 2 gives the core ten-
sor G ∈ R2×2×2 and component matri-
ces A ∈ R326×2, B ∈ R5×2, C ∈ R2×2

G(:, :, 1) =
[

0.3376 16.3568
−1.7602 0.7665

]
G(:, :, 2) =

[
178.6889 −0.6870
−0.0978 −80.4706

]

A =


0.0476 −0.0663
0.0571 0.0811

...
...

0.0556 −0.0236
0.0547 −0.0455



B =


0.5444 −0.3705
0.4363 −0.5090
0.3391 −0.1313
0.3919 0.3124
0.4947 0.6992


C =

[
0.7342 0.6789
−0.6789 0.7342

]

Each component matrix allows us to
separate properties. For instance, the
second column of B noticeably groups
the first three behaviors of PS, CM, and
R, and the last two behaviors of AV and
DI (by looking at sign and magnitude).

Tucker Decomposition Results

The column vectors in B are principal
components. The projection of the first
five children’s data onto the second col-
umn of B is

X (1 : 5, :, 1)B(:, 2)

=


3 2 1 2 7
6 7 1 1 1
1 2 1 2 7
7 7 7 1 1
6 4 4 1 1



−0.3705
−0.5090
−0.1313
0.3124
0.6992



=


3.2583
−4.0955
3.9993
−6.0638
−3.7725


The significance of the resulting vector
is that negative values correspond to the
extent to which behaviors of PS and/or
CM are present, whereas positive val-
ues correspond to the extent to which
behaviors of AV and/or DI are present.
Thus, the projections summarize infor-
mation about the behavior of each child
in situation 1.

Interpreting Tucker Results
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