Applications of Tensor Decomposition

UMBC REU Site: Interdisciplinary Program in High Performance Computing Sergio Garcia Tapia¹, Rebecca Hsu², Alyssa Hu², Darren Stevens II³, RA: Jonathan S. Graf³, Faculty mentor: Matthias K. Gobbert³, Client: Tyler Simon⁴ ¹University of Buffalo, ²University of Maryland, College Park, ³UMBC, ⁴Laboratory for Physical Sciences

Motivation

Many application problems in data analysis inherently contain multidimensional data, also known as tensors. Oftentimes, summaries about the data are desired for a study, for which methods such as principal component analysis are useful. For N-dimensional tensors, an alternative approach is to compute and interpret tensor decompositions of the original multidimensional data.

Tucker Decomposition Results

Example: Psychological experiment [3]:

• I = 326 children who exhibited • J = 5 behaviors — Proximity Seeking (PS), Contact Maintaining (CM), Resistance (R), Avoidance (AV), and Distance Interaction (DI) — in

Interpreting Tucker Results

The column vectors in B are principal components. The projection of the first five children's data onto the second column of B is

 $\mathcal{X}(1:5,:,1) B(:,2)$

Tensor Basics

A tensor is an N-way array used to store data, and is thus a generalization of a matrix. A **Tucker decomposition** for a tensor expresses it in terms of components. It is also known as 3MPCA [2], for a 3-way tensor $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$ and it satisfies

 $\mathcal{X} \approx \mathcal{G} \times_1 A \times_2 B \times_3 C$

- K = 2 situations.
- \Rightarrow Data is 3-way tensor $\mathcal{X} \in \mathbb{R}^{326 \times 5 \times 2}$.

Strength of each behavior is scored from 1 to 7, resulting in data, for instance, for the first five children in situation 1:

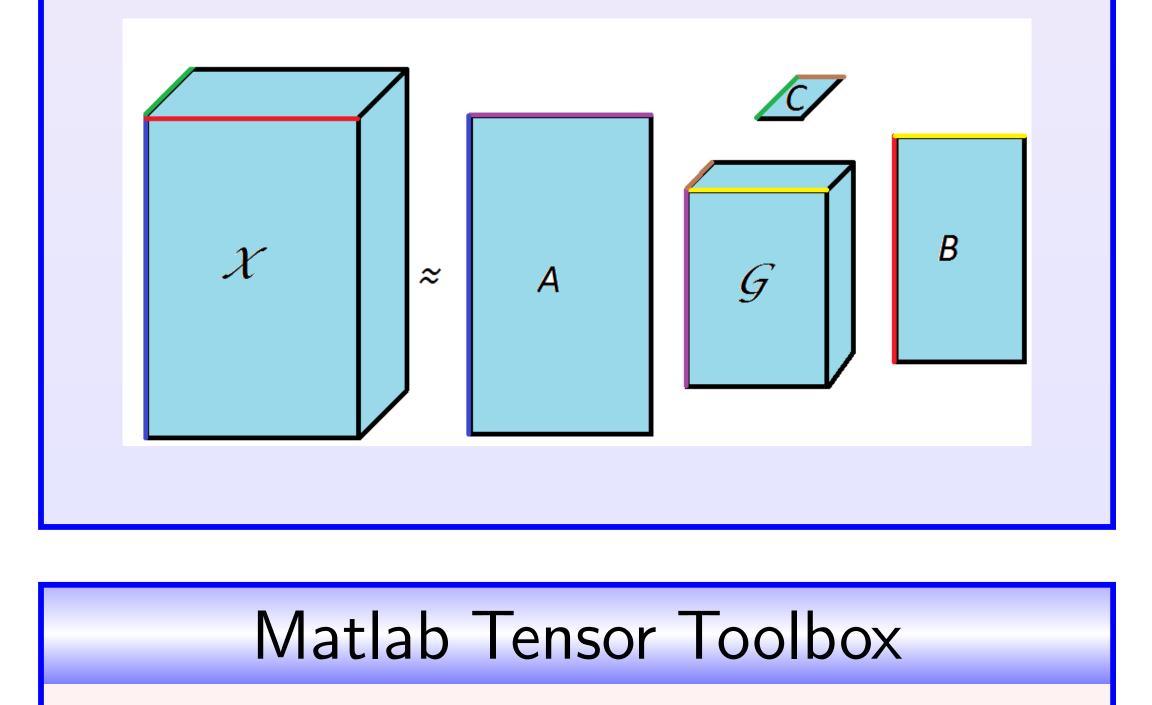
Child	PS	CM	R	AV	DI
1	3	2	1	2	7
2	6	7	1	1	1
3	1	2	1	2	7
4	7	7	7	1	1
5	6	4	4	1	1

Computing a Tucker decomposition using tucker_als with requested core tensor size $2 \times 2 \times 2$ gives the core tensor $\mathcal{G} \in \mathbb{R}^{2 \times 2 \times 2}$ and component matrices $A \in \mathbb{R}^{326 \times 2}$, $B \in \mathbb{R}^{5 \times 2}$, $C \in \mathbb{R}^{2 \times 2}$

	Γ3	2	1	2	7 -	ΙГ	-0.3705	٦
	6	7	1	1	1		-0.5090	
—	1	2	1	2	7		-0.1313	
	7	7	7	1	1		0.3124	
	6	4	4	1	1 _	L	0.6992	
			Г	2	8.258	3 7		
					1.095			
= 3.9993								
					5.063			
					8.772			

The significance of the resulting vector is that negative values correspond to the extent to which behaviors of PS and/or CM are present, whereas positive values correspond to the extent to which behaviors of AV and/or DI are present. Thus, the projections summarize information about the behavior of each child

for the core tensor $\mathcal{G} \in \mathbb{R}^{P \times Q \times R}$ and the component (orthogonal) matrices $A \in \mathbb{R}^{I \times P}, B \in \mathbb{R}^{J \times Q}, C \in \mathbb{R}^{K \times R},$ with user requested positive integers $P \leq I, Q \leq J, R \leq K.$



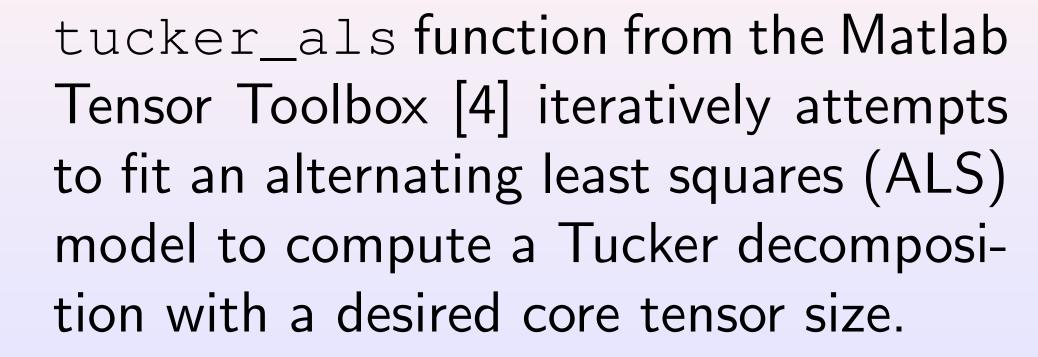
Starting from an initial guess, the

$\mathcal{G}(:,:,1) = \begin{bmatrix} 0.3376 & 16.3568 \\ -1.7602 & 0.7665 \end{bmatrix}$
$\mathcal{G}(:,:,2) = \begin{bmatrix} 178.6889 & -0.6870 \\ -0.0978 & -80.4706 \end{bmatrix}$
$A = \begin{bmatrix} 0.0476 & -0.0663 \\ 0.0571 & 0.0811 \\ \vdots & \vdots \\ 0.0556 & -0.0236 \\ 0.0547 & -0.0455 \end{bmatrix}$
$B = \begin{bmatrix} 0.5444 & -0.3705 \\ 0.4363 & -0.5090 \\ 0.3391 & -0.1313 \\ 0.3919 & 0.3124 \\ 0.4947 & 0.6992 \end{bmatrix}$
$C = \begin{bmatrix} 0.7342 & 0.6789 \\ -0.6789 & 0.7342 \end{bmatrix}$
Each component matrix allows us

in situation 1.

References

- [1] Kolda and Bader, Tensor Decompositions and Applications, SIAM Review, 2009
- [2] Kiers and Mechelen, Three-Way Component Analysis: Principles and Illustrative Application, *Psychological Methods*, 2001
- [3] The Three-Mode Company: three-mode.leidenuniv.nl > Data sets > Dutch children in the Strange Situations
- [4] Matlab Tensor Toolbox: www.sandia. gov/~tgkolda/TensorToolbox/
- Full technical report: HPCF-2016-17, 5 hpcf.umbc.edu > Publications



separate properties. For instance, the

second column of B noticeably groups

the first three behaviors of PS, CM, and

R, and the last two behaviors of AV and

DI (by looking at sign and magnitude).

• **REU Site**: hpcreu.umbc.edu

• NSF, NSA, DOD, UMBC, HPCF, CIRC