Dimensionality Reduction Using Sliced Inverse Regression In Modeling Large Climate Data

UMBC REU Site: Interdisciplinary Program in High Performance Computing Ross Flieger-Allison¹, Lois Miller², Danielle Sykes³, Pablo Valle⁴ RAs: Sai K. Popuri³, Nadeesri Wijekoon³ Faculty: Nagaraj K. Neerchal³ Client: Amita Mehta⁵ ¹Williams College ²DePauw University ³UMBC ⁴Kean University ⁵JCET

Background	Methodology	F	Parallelization		
 The Missouri River Basin (MRB) is a significant agricultural region that is 	 Sliced Inverse Regression (SIR) is a data-analytic tool that can be used to 	Table 1: Pe Processes	erformance Stud Subregion*	dy Results MRB	
not irrigated and thus dependent on rainfall	reduce the dimensionality of a large	1	01:14:24	N/A	
	set of covariates	4	00:19:07	09:54:22	
 Precipitation predictions are histor-	 Nadaraya-Watson Estimator (NWE)	8	00:11:04	05:20:31	
ically inaccurate due to the semi-	is a simple non-paramentric smooth-	16	00:05:58	02:49:49	
continuous nature of observed precip-	ing regression method:	32	00:03:13	04:25:51	
itation data	$\hat{m} - \frac{\sum_{i=1}^{n} K_h(x-x_i)y_i}{\sum_{i=1}^{n} K_h(x-x_i)y_i}$	64	N/A	03:41:26	

 $m_x = \overline{\sum_{i=1}^n K_h(x - x_i)}$

• The NWE is adapted to account for the semi-continous nature of predictions

Results

• The following figures show a comparison between observed precipitation data, and their predictions

* denotes a region from latitutude -101 to -97 and longitude 39.25 to 42.95

Data

- Precipitation data is semi-continuous, meaning many observations are equal to 0 and all other observations are positive and follow a continuous distribution
- Predictions are calculated using observed data and data from MIROC5, a Global Climate Model (GCM), across 57 years (1949-2005) from over 270,000 locations
- Precipitation at any given location sdepends on a large number of covariates: current and past values of monthly precipitation, sea-level pres-

Figure 2: Observed and predicted monthly precipitation, including the proportion of 0 values for both

Conclusions

- We have successfully demonstrated that SIR and NWE methods can be implemented to work on a large dataset
- Parallelization of SIR and NWE code greatly increases computational efficiency on the subregion, and also improves efficiency for the entire MRB region, up to 16 processes

References & Acknowledgments

- [1] National Drought Information Integrated https://www.drought.gov/ Systems. drought/dews/missouri-river-basin/ about.

Figure 3: Mean Squared Error from positive predictions for months with positive rainfall (true positives)

REU Site: hpcreu.umbc.edu NSF, NSA, DOD, UMBC, HPCF, CIRC